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Abstract

The effect of thermal asymmetry on laminar forced convection heat transfer in a plane porous channel with Darcy dissipation has
been investigated numerically. The parallel plates making the channel boundaries were kept at constant, but different temperatures.
The thermal asymmetry thus imposed on the system, results in an asymmetric temperature field and different heat fluxes across the chan-
nel boundaries. Depending on Darcy, Peclét and Reynolds number, the thermal asymmetry may lead to a reversal of the heat flux at a
certain position along the flow at least at one of the channel walls. The corresponding Nusselt numbers become zero and might expe-
rience discontinuities thereby jumping from infinite positive to infinite negative, or vice versa. This feature is observed not only in the
region of thermal development, but also in the fully developed region. In the fully developed region, an analytical expressions for the
Nusselt numbers were obtained. From these expressions, analytical equations were deduced for the calculations of the axial positions
along the channel where the Nusselt numbers become zero, or experiences discontinuity.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The heat transfer with forced convection in porous
media is an interesting and challenging physical problem,
the solution of which is important in several areas of engi-
neering practice, see e.g. Bejan et al. [1]. It has, therefore,
extensively been studied in the past, and various fluid flow
and heat transfer arrangements have been treated both
analytically and numerically, see e.g. Kaviany [2], Nield
and Bejan [3], Bejan [4] and Vafai [5]. However, the prob-
lem is far from being completely solved, even the governing
equations are still the subject matter of scientific debates,
see e.g. Travkin and Catton [6], Gray and Miller [7], Bear
and Bachmat [8], and Whitaker [9]. Nevertheless, the math-
ematical models used so far account for different effects and
the solutions obtained are adapted to various boundary
conditions. For instance, Kaviany [10] studied laminar
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forced convection in a porous channel bounded by isother-
mal parallel plates adopting the Brinkman-extended Darcy
model. Vafai and Kim [11] arrived at a closed form solu-
tion with fully developed forced convection in a porous
plane channel exposed to a symmetric heating at constant
heat flux. Nield et al. [12] analysed the fully developed
forced convection in a fluid-saturated porous-medium
channel with isothermal or isoflux boundaries. Nield
et al. [13] investigated the heat transfer in a thermally devel-
oping region of a hydrodynamically developed flow in a
plane porous channel bounded by isothermal plates. The
energy equation they used accounts for viscous dissipation
and axial heat conduction. The solutions reported illustrate
the effects of Brinkman, Peclét and Darcy numbers on the
heat transfer for different dissipation models. Mohamad
[14] investigated the flow field and heat transfer with lami-
nar forced convection in conduits filled with a porous
material to different degrees. As far as the homogeneously
filled channel is concerned, the effect of Darcy number on
heat transfer in the fully developed flow region may largely
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Nomenclature

cp specific heat at constant P

CP cold plate
C1 constant
C2 constant
Da Darcy number, Eq. (6)
Ec Eckert number, Eq. (6)
HP hot plate
k thermal conductivity
K permeability of porous medium
m inverse square root of Da, Eq. (9)
M viscosity ratio, Eq. (9)
Nu Nusselt number, Eqs. (23) and (24)
p dimensionless pressure, Eq. (6)
P pressure
Pe Peclét number, Eq. (6)
Pr Prandtl number
q heat flux
Re Reynolds number, Eq. (6)
T temperature
u dimensionless velocity
U velocity
W half width of channel
x dimensionless axial coordinate
X axial coordinate
y dimensionless cross coordinate
Y cross coordinate

e heat source strength, Eq. (3)
r pressure drop function, Eq. (6)
j thermal diffusivity
m kinematic viscosity
l dynamic viscosity
h dimensionless temperature with thermal asym-

metry, Eq. (6)
H dimensionless temperature with thermal symme-

try, Eq. (64)
q density
X parameter, Eqs. (17) and (64)
n dimensionless axial coordinate, Eq. (18)
w scaled temperature difference with thermal

asymmetry, Eq. (18)
W scaled temperature difference with thermal sym-

metry, Eq. (64)

Indices

eff effective property
C cold
H hot
IN inlet
m average
SL slip flow
W wall

J. Mitrovic, B. Maletic / International Journal of Heat and Mass Transfer 50 (2007) 1106–1121 1107
be neglected for Da > 1. Haji-Sheikh and Vafai [15] per-
formed heat transfer analysis on various cross sections of
the conduits without a heat source giving detailed insights
into the effect of Darcy number on thermal performance of
porous inserts. For this model, Haji-Shekh [16] provided
approximate expression for the Nusselt number.

When treating transport processes in porous media the
so-called Local Thermal Equilibrium model (LTE) is fre-
quently adopted. By this model, the fluid and the porous
medium are considered as a single phase having physical
properties of the actual phases mostly weighted by the vol-
ume fractions occupied by these phases. The applicability
of this model is confined to a certain range of process
and system parameters like fluid velocity and transport
properties of the phases. Contrary to this model, the model
of Local Thermal Non-Equilibrium (LTNE) accounts for
thermal interaction among the phases within the porous
system [17–23]. By this model the thermal interaction is
based on a heat transfer coefficient at the phase interface
within the porous system which is previously unknown.
The LTNE two equations model is usually considered to
be more adequate than the one equation LTE model.
The boundary between these models regarding their appli-
cability has been discussed in several papers, see e.g. Kim
and Jang [19] and the references therein.
In summary, the treatments in all of the above men-
tioned references are restricted to thermally symmetric
boundary conditions. In practice, however, it is indeed
almost impossible to accomplish such conditions, and ther-
mal asymmetry will probably be the rule rather than excep-
tion. Thermal asymmetry is shown by Mitrovic and
Maletic [24] to materially affect the heat transfer in laminar
forced convection in a conduit of annular cross section
without a porous insert, and similar effects of thermal
asymmetry may also be expected in the case of porous
channels. Mahmud and Fraser [25] studied the heat trans-
fer and entropy generation with laminar fully developed
flow in a porous channel bounded by parallel plates, which
were kept isothermal at different temperatures thus impos-
ing on the system a thermal asymmetry. The inertia in the
momentum equation was disregarded, while a volumetric
source term was included into the energy equation. The
physical properties were taken as constant, so the flow field
is decoupled from the temperature field, and the one-
dimensional transport equations were solved analytically.
The thermal asymmetry results in an asymmetric tempera-
ture distribution in the porous gap the shape of which
depends on the Eckert, the Prandtl and the Darcy number.
Consequently, it also affects the heat transfer across the
porous insert. The analysis of Mahmud and Fraser [25] is
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restricted to the cold plate. Xiong and Kuznetsov [26]
investigated thermal dispersion and non Darcian effects
with forced convection in a Couette flow in a composite flat
conduit. The walls were kept at constant but different heat
fluxes. Mitrovic and Maletic [27] performed a detailed heat
transfer analysis with laminar forced convection in a por-
ous annular channel with Darcy dissipation.

Detailed considerations of forced convection heat trans-
fer in a porous flat channel exposed to a thermal asymmetry
at constant wall temperatures do not seem to exist in the lit-
erature. This paper provides an analysis of the issue, assum-
ing a hydrodynamically developed steady-state laminar
flow. The porous insert of homogeneous permeability is
sandwiched between two parallel plates that are at constant,
but different temperatures. The heat source corresponds to
the Darcy model, the axial heat conduction being neglected.
The problem is treated on the basis of the LTE model
numerically by using Mathematica [28]. A closed solution
of the energy equation was obtained in the fully developed
region. As is demonstrated in this paper, the thermal asym-
metry substantially affects the heat transfer. Depending on
Darcy, Eckert and Peclét number, the thermal asymmetry
can lead to a reversal of the heat flux with discontinuities
of the Nusselt numbers on both plates.

2. Physical model and governing equations

The physical model is illustrated in Fig. 1. Two parallel
plates of constant temperatures TC and TH 6¼ TC sandwich
a porous layer of a thickness 2 W saturated with a Newto-
nian fluid flowing along the X-coordinate. The plates are
infinite in the direction orthogonal to the X0Y-plane, the
flow and temperature fields depend only on X and Y. After
a sufficiently large flow length downstream the channel
inlet, in the fully developed region, these fields become
independent of X.

The following assumptions are adopted:

� the permeability of the porous medium is homogeneous,
� the physical properties are constant,
� free convection effects are neglected,
� the fluid temperature and velocity are constant in the

inlet cross-section,
� the phases are locally at thermal equilibrium,
� the heat source term corresponds to the Darcy flow

model,
� the system is at steady-state,
Fig. 1. Physical system.
� the fluid flow is taken as one-dimensional and
developed,
� the axial heat conduction is neglected.

With these assumptions, the fluid flow is described by
the Brinkman momentum equation, see e.g. Nield et al.
[13],

leff

o2U

oY 2
� l

K
U � oP

oX
¼ 0; ð1Þ

whereas the heat transfer obeys the following energy
equation,

U
oT
oX
¼ j

o
2T

oY 2
þ e

qcp
: ð2Þ

Here leff denotes an effective viscosity, U the axial velocity,
l the dynamic fluid viscosity, K the permeability of the por-
ous medium, P the pressure, T the temperature and e a vol-
umetric heat source; j, q and cp are the usual fluid
properties, X and Y follow from Fig. 1.

The simplest expression for e is [13]

e ¼ l
K

U 2: ð3Þ

Eqs. (1) and (2) can be written non-dimensional as follows

o2u
oy2
� l

leff

u
Da
� Re

l
leff

op
ox
¼ 0; ð4Þ

Peu
oh
ox
¼ o2h

oy2
þ EcPr

Da
u2; ð5Þ

where the non-dimensional quantities are defined by

x ¼ X
W
; y ¼ Y

W
; u ¼ U

U IN
; Re ¼ U IN W

m
;

Da ¼ K

W 2
; p ¼ P

qU 2
IN

; Pe ¼ U IN W
j

; h ¼ T � T IN

T H � T IN

Ec ¼ U 2
IN

cpðT H � T IN Þ
; Pr ¼ m

j
:

ð6Þ
The indices H and IN refer to the hot plate and the channel
inlet, respectively. Note that the definitions of the Eckert
number Ec and the temperature h are inappropriate at
TH = TIN.

3. Flow field and pressure drop

With the boundary conditions

Y ¼ þW ; y ¼ þ1: U ¼ 0; u ¼ 0;

Y ¼ �W ; y ¼ �1: U ¼ 0; u ¼ 0;
ð7Þ

the solution of Eq. (1) is

u ¼ U
m2

1� coshðmyÞ
cosh m

� �
¼ U

m2
1� emy þ e�my

2 cosh m

� �
; ð8Þ

� Re
l

leff

op
ox
¼ U; m2 ¼ 1

Da
l

leff

¼ 1

DaM
: ð9Þ
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Averaging the velocity u over the channel width results in
an expression for the pressure drop function U,

U m ¼
1

2W

Z þW

�W
UdY ¼ 1

2
U IN

Z þ1

�1

udy; ð10Þ

1

2

Z þ1

�1

udy ¼ Um

UIN
¼ 1; ð11Þ

U
m2

1� sinh m
m � cosh m

� �
¼ 1; ð12Þ

U ¼ m2

1� sinh m
m�cosh m

¼ 1=ðDaMÞ
1�

ffiffiffiffiffiffiffiffiffiffiffi
DaM
p

sinhð1=
ffiffiffiffiffiffiffiffi
Da M
p

Þ
coshð1=

ffiffiffiffi
Da
p

MÞ

: ð13Þ

Fig. 2 illustrates Eq. (13). Mahmud and Fraser [25] pro-
posed correlations for the pressure drop function
U(M = 1) which are valid piece-wise along the parameter
Da. Their limit value of U at Da ?1 reported to be
U = 2.95 is slightly lower than the exact limit value of
U = 3.0 deduced from Eq. (13), thus

U ¼ �Re
l

leff

op
ox
¼ �Re

M
op
ox
¼ 3; DaM !1: ð14Þ
4. General expressions for temperature field and heat
transfer

Inserting the expression (8) for the velocity u in Eq. (2)
gives

PeU
m2

f ðm; yÞ oh
ox
¼ oh2

oy2
þ EcPrU2

m2

leff

l
f 2ðm; yÞ; ð15Þ

f ðm; yÞ ¼ 1� coshðmyÞ
cosh m

: ð16Þ

Introducing

X ¼ EcPrU2

m2

leff

l
; ð17Þ

w ¼ h
X
; n ¼ x

Pe
; ð18Þ

Eq. (15) takes the form
Fig. 2. Pressure drop characteristic U as function of Darcy number Da.
f ðm; yÞ U
m2

ow
on
¼ o2w

oy2
þ f 2ðm; yÞ: ð19Þ

The boundary conditions to be satisfied are

y ¼þ1: h¼ ðT H �T INÞ=ðT H �T IN Þ ¼ 1; w¼ 1=X¼wH ;

y ¼�1: h¼ ðT C�T IN Þ=ðT H �T IN Þ ¼ hC; w¼ hC=X¼wC:

ð20Þ

The quantity w represents the non-dimensional tempera-
ture difference scaled by the parameter X. The field of this
quantity obtained from Eq. (19) coincides with the temper-
ature field for X = 1. For other values of the parameter X,
the temperature field is correspondingly stretched, or com-
pressed. The mean fluid temperature is obtained from

hm ¼
1

2

Z þ1

�1

uhdy; wm ¼
1

2

Z þ1

�1

uwdy ð21Þ

and the Fourier heat flux q is calculated by

q ¼ �k
oT
oY
¼ �k

T H � T IN

W
oh
oy
; ð22aÞ

qW
kðT H � T IN Þ

¼ � oh
oy
¼ �X

ow
oy
; ð22bÞ

giving the Nusselt number Nu at the channel boundary

NuH ¼
W
k

q
T H � T m

¼ � 1

1� hm

oh
oy

� �
H

¼ � 1

wH � wm

ow
oy

� �
H

; ð23Þ

NuC ¼
W
k

q
T C � T m

¼ � 1

hC � hm

oh
oy

� �
C

¼ � 1

wC � wm

ow
oy

� �
C

; ð24Þ

where the indices H and C refer to the hot (y = +1) and
cold (y = �1) boundary, respectively.

5. Representative results

Eq. (19) can be solved by the method of separation of
variables, as has been demonstrated by Lahjomri et al.
[29,30] and Nield et al. [13] for the symmetric thermal
boundary conditions. However, we prefer a numerical
treatment by using Mathematica [28]. Prior to presenting
the numerical results in the developing region, an analytical
solution obtained in the thermally developed region will be
illustrated for some sets of the process parameters.

5.1. Fully developed heat transfer region

The forced convection heat transfer in a porous channel
described by Eq. (19) reduces in the fully developed region
to a relatively simple problem of heat conduction in a plane
wall with a heat source, the strength of which changes
along the coordinate y. Heat transfer in this region has
been treated by Mahmud and Fraser [25]. They used the
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difference of the plate temperatures to define a heat transfer
coefficient. This, however, is inappropriate when the tem-
perature distribution in the porous layer passes a maximum
and the heat generated inside the layer is dissipated across
both plates. In the following, first a detailed solution of the
energy equation is given.

5.1.1. Temperature distribution with thermal asymmetry

Setting ow/on = 0 and considering the expression (16)
for the function f, Eq. (19) becomes

o
2w

oy2
¼� 1� 2

coshm
emyþ e�my

2
þ 1

4cosh2m
ðe2myþ e�2myþ2Þ

� �
:

ð25Þ

Performing integration gives

w¼� y2

2
� 2

cosh m
emy þ e�my

2m2
þ 1

4cosh2m

e2my þ e�2my

4m2
þ y2

� �� �
þC1yþC2 ð26aÞ

or

w¼� y2

2
� 2

m2

coshðmyÞ
coshm

þ 1

4cosh2m

2cosh2ðmyÞ� 1

2m2
þ y2

� �� �
þC1yþC2;

ð26bÞ

w¼� y2

2
� 2DaM coshðy=

ffiffiffiffiffiffiffiffiffiffiffi
DaM
p

Þ
coshð1=

ffiffiffiffiffiffiffiffiffiffiffi
DaM
p

Þ
þð2cosh2ðy=

ffiffiffiffiffiffiffiffiffiffiffi
DaM
p

Þ� 1ÞDaM þ 2y2

8cosh2ð1=
ffiffiffiffiffiffiffiffiffiffiffi
DaM
p

Þ

 !

þC1yþC2: ð26cÞ

The boundary conditions, Eq. (20), deliver the constants C1

and C2,

C1 ¼
1

2
ðwH � wCÞ; ð27Þ

C2 ¼
1

2
ðwH þ wCÞ þ

1

2
� 7

4m2
þ 1

4cosh2m
1� 1

2m2

� �� �
:

ð28Þ

For the limit m ? 0, that is, for DaM ?1, Eq. (26) re-
duce to

wðm! 0Þ ¼ 1

2
ðwH þ wCÞ þ

1

2
ðwH � wCÞy;

m! 0 ðDaM !1Þ: ð29Þ
Fig. 3. Distribution of scaled temperature difference w � w (m ? 0) in the
porous layer.
Subtracting Eq. (29) from Eq. (26a) gives

w� wðm! 0Þ ¼ � y2

2
� 2

cosh m
emy þ e�my

2m2

�

þ 1

4cosh2m

e2my þ e�2my

4m2
þ y2

� ��
þ F ðmÞ

ð30Þ

F ðmÞ ¼ 1

2
� 7

4m2
þ 1

4cosh2m
1� 1

2m2

� �
: ð31Þ

As follows form Eq. (30), the scaled temperature difference
w � w (m ? 0) is symmetric with respect to the symmetry
plane (y = 0) of the channel.

Fig. 3 shows the profiles of the scaled temperature differ-
ence w � w (m ? 0) according to Eq. (30) for selected val-
ues of the parameter m ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
DaM
p

, the variation of which
results in different porosities and/or the channel widths. As
follows from the diagram, the larger the parameter m is,
the stronger the temperature change. For m ? 0, that is,
for DaM ?1, the difference w � w (m ? 0) becomes zero
and the porous layer behaves like a solid wall or a channel
flow without a heat source.

To throw some more light on the effect of thermal
asymmetry on the temperature field, Eq. (30) is rear-
ranged,

h ¼ 1

2
ð1þ hCÞ þ

1

2
ð1� hCÞy þ X � ðw� wðm! 0ÞÞ; ð32Þ

and regarding the specified temperatures (TIN,TC,TH),
three cases are considered and illustrated in this paper:

T IN < T C < T H : 0 < hC < 1; X > 0

T C < T IN < T H : �1 < hC < 0; X > 0

T C < T H < T IN : 1 < hC < þ1; X < 0:

For the purposes of the numerical evaluation, the parame-
ters hC and X are chosen as follows:

hC ¼ 0:5; X ¼ 5:0

hC ¼ �0:5; X ¼ 5:0

hC ¼ 2:0; X ¼ �5:0:

Fig. 4 shows the temperature distributions for these param-
eter combinations. The straight line (m = 0) gives the tem-
perature distribution in the channel without a porous insert
[31]. As may be seen from the diagrams, the thermal asym-
metry affects the temperature field significantly, and its
deviation from the thermally symmetric field is larger at
larger hC and/or m. The parameter m shapes the tempera-
ture distribution and determines the position of its maxi-
mum/minimum at given X. Note that X depends on m
so, that a variation of m at fixed X actually corresponds
to a variation of Ec PrM,

EcPr M ¼ X
m2

1� sinh m
m � cosh m

� �2

;

as follows from Eqs. (13) and (17).



Fig. 4. Effect of thermal asymmetry and of the parameter m on the
temperature distribution across the porous layer (m = 0: channel without
porous insert).

Fig. 5. Effect of thermal asymmetric on the dimensionless Fourier heat
flux at the boundaries of the porous layer. The point AP on the curve
indicates the adiabatic state.
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5.1.2. Heat flux

By Eq. (22b), the heat flux q is proportional to the deriv-
ative ow/oy. For the latter, Eq. (26a) and the integration
constants give

ow
oy
¼ 1

2
ðwH � wCÞ � y � 2

cosh m
emy � e�my

2m

�

þ 1

4cosh2m

e2my � e�2my

2m
þ 2y

� ��
ð33aÞ

ow
oy
¼ 1

2
ðwH � wCÞ � y � 2

m
sinhðmyÞ
cosh m

�

þ 1

2cosh2m

sinhðmyÞ coshðmyÞ
m

þ y
� ��

: ð33bÞ

At the hot plate, y = +1, it is

ow
oy

� �
y¼þ1

¼ 1

2
ðwH � wCÞ � 1� 3

2m
sinh m
cosh m

þ 1

2cosh2m

� �
;

ð34Þ
and at the cold plate, y = �1,
ow
oy

� �
y¼�1

¼ 1

2
ðwH � wCÞ þ 1� 3

2m
sinh m
cosh m

þ 1

2cosh2m

� �
:

ð35Þ

Fig. 5 illustrates the slopes ow/oy = (oh/oy)/X of the tem-
perature profiles at the plates (y = +1,y = �1) as function
of the parameter m, Eqs. (34) and (35), for the selected
thermal asymmetries (wH � wC). The curves are symmetri-
cal with respect to the line ow/oy = (1/2) � (wH � wC),
which is the dimensionless heat flux in the channel without
a porous insert,

qW
kðT H � T IN Þ

¼ � oh
oy
¼ � 1

2
XðwH � wCÞ: ð36Þ

For sufficiently large m, the curves in Fig. 5 reach the
asymptotes,

ow
oy

� �
y¼�1

¼ 1

2
ðwH � wCÞ � 1:

Above the symmetry line, the curves are valid for the cold
plate (CP, y = �1), and the quantity (ow/oy)y=+1 is positive
for all values of the parameter X, which means that the
porous layer always dissipates the heat across this plate.
As is also obvious from this figure, in comparison to the



Fig. 6. Conditions for adiabatic hot plate (y = +1), implicit (above) and
explicit (below) in parameter m.

ig. 7. Dimensionless heat fluxes at the boundaries for selected thermal
symmetries according to Eqs. (42) and (43).
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case of an empty channel (m = 0), the porous insert en-
hances the heat flux at the cold plate.

The situation is not as unique at the hot plate (HP,
y = +1, curves below ow/oy = (1/2) � (wH � wC)), Fig. 5.
Since (wH � wC) P 0, ow/oy may be positive, zero, or neg-
ative. This depends on the parameter m and the thermal
asymmetry (wH � wC). For ow/oy > 0, the porous layer is
heated by the hot plate, whereas for ow/oy < 0, the porous
layer dissipates the heat across this plate. For ow/oy = 0,
the hot plate is adiabatic, AP in the diagrams.

Fig. 6 illustrates the range of the parameters with heat-
ing or/and respectively cooling of the porous layer by the
hot plate. The boundary between the two regions repre-
sents the adiabatic states of this plate, (ow/oy)y=+1 = 0, or

wH � wC ¼ 2 � 1� 3

2m
sinh m
cosh m

þ 1

2cosh2m

� �
; ð37Þ

EcPrM
1� hC

¼ 1

2

m2

U2

�
1� 3

2m
sinh m
cosh m

þ 1

2cosh2m

� �
: ð38Þ

For sufficiently large m, Eq. (37) reduces to

wH � wC ¼ 2 � 1� 3

2m

� �
; ð39Þ

whereas Eq. (38) becomes

EcPr M
1� hC

¼ ðm� 1Þ2

ð2m� 1Þm3
; m!1 ð40Þ

EcPr M
1� hC

¼ 1

3m2
; m! 0: ð41Þ
The adiabatic state of the cold plate can easily be obtained
from Eq. (35) resulting in an expression which is identical
to Eq. (37), but with a negative right-hand side.

To gain further insights into the effect of thermal asym-
metry on the heat flux, Eqs. (34) and (35) are multiplied by
X giving the expressions

ðoh=oyÞy¼þ1¼
1

2
ð1�hCÞ�

EcPrMU2

m2
1� 3

2m
sinhm
coshm

þ 1

2cosh2m

� �
;

ð42Þ

ðoh=oyÞy¼�1¼
1

2
ð1�hCÞþ

EcPrMU2

m2
1� 3

2m
sinhm
coshm

þ 1

2cosh2m

� �
;

ð43Þ

which are visualised in Fig. 7 for some values of EcPrMU2.
A variation of this parameter shifts the curves up, or down.
At hC > 1, the fluid inlet temperature is larger than the hot
plate temperature and the lines representing the heat flux of
this plate lie below the symmetry line.

For sufficiently large m, Eqs. (42) and (43) can be written
as

oh
oy

� �
y¼þ1

¼ 1

2
ð1� hCÞ �

2m� 3

2

m3

ðm� 1Þ2
EcPrM ; ð44Þ

oh
oy

� �
y¼�1

¼ 1

2
ð1� hCÞ þ

2m� 3

2

m3

ðm� 1Þ2
EcPrM ; ð45Þ
F
a
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and for m� 3/2, that is, for DaM� 4/9,

oh
oy

� �
y¼þ1

¼ 1

2
ð1�hCÞ�m2EcPrM ¼ 1

2
ð1�hCÞ�

EcPr
Da; ð46Þ

oh
oy

� �
y¼�1

¼ 1

2
ð1�hCÞþm2EcPrM ¼ 1

2
ð1�hCÞþ

EcPr
Da

; ð47Þ

which for Ec Pr/Da ? 0 reduces to the case of an empty
channel.

5.1.3. The Nusselt numbers

In the fully developed region, the average fluid temper-
ature, defined in Eq. (21), can be obtained analytically,
wM ¼
hm

X
¼ 12ðwC þ wH Þðm� tanh mÞm2 þ ð4m3 � 33Þð2þ sech2mÞ þ ð88þ tanh2mþ 17 sech2mÞ tanh m

24m2ðm� tanh mÞ : ð48Þ
With this expression for wm, Eqs. (23) and (24) deliver
NuH ¼
12ðwC � wH Þðm� tanh mÞm2 þ 12ð2mþ m sech2m� 3 tanh mÞðm� tanh mÞm

2mð4m2 þ 6ðwC � wHÞm2 � 33Þ þ ð89� 12m2ðwC � wHÞÞ tanh mþ ð4m3 � 39mþ 16 tanh mÞ sech2m
; ð49Þ

NuC ¼
12ðwH � wCÞðm� tanh mÞm2 � 12ð2mþ m sech2m� 3 tanh mÞðm� tanh mÞm

2mð33þ 6ðwC � wH Þm2 � 4m2Þ � ð88þ 12ðwC � wH Þm2Þ tanh m� tanh3mþ ð39m� 4m3 � 17 tanh mÞ sech2m
: ð50Þ
The Nusselt numbers NuH and NuC become zero when the
plates become adiabatic, see Eq. (37) for the hot plate. In
addition, setting in Eqs. (49) and (50) the denominators
equal to zero, that is, equating the temperatures of the
plates and the average fluid temperature (wH = wm,
wC = wm), one obtains the vertical asymptotes of NuH

and NuC:
NuH = ±1:

wH � wC ¼
8m3 � 66mþ ð4m3 � 39mþ 16 tanh mÞ sech2mþ 89 tanh m

12ðm� tanh mÞm2

ð51Þ
NuC = ±1:

wH � wC ¼
66m� 8m3 � ð4m3 � 39mþ 16 tanh mÞ sech2m� 88 tanh m� tanh3m

12ðm� tanh mÞm2

ð52Þ
Fig. 8 illustrates the Nusselt numbers according to Eqs.
(49) and (50) at the fluid inlet temperature below the plate
temperatures, TIN < TC < TH for X = 1 at selected values
of wC. Notice that for X = 1, the quantity w is identical
with the non-dimensional temperature h. For the thermal
symmetry (wC = wH, top diagram in Fig. 6), the Nusselt
numbers NuH and NuC are equal, and they increase as
the parameter m increases tending to the limit value
NuH1 = NuC1 = 3, whereas for m = 0, NuH = NuC =
1.886, which is in agreement with the literature for an
empty channel.

At a thermal asymmetry, the Nusselt number NuH expe-
riences a discontinuity at a position that moves toward lar-
ger m as wC decreases. At the thermal asymmetries wC

specified in Fig. 8, the Nusselt number NuH jumps from
infinite negative to infinite positive. Further increase in
the thermal asymmetry results in the appearance of an
additional discontinuity of NuH, which then again disap-
pears at stronger thermal asymmetry, Fig. 9.
The existence of the second discontinuity immediately
follows from Fig. 10, where the thermal asymmetry
wH � wC given in Eq. (51) is plotted versus the parameter
m at NuH ?1 . As the Figure shows, two vertical asymp-
totes may establish at wH � wC ranging from 2/3 to
approximately 0.69.

5.1.4. Constant strength of heat source

A heat source of constant strength requires each quan-
tity in the expression

e ¼ l
K

U 2 ¼ const ð53Þ

to be constant, or a variation of the ratio l/K across the
porous layer in a way that compensates the variation of
the kinetic energy, l/K 	 1/U2.

Taking e as function of y and averaging gives

l
K

� �
m
¼
Z þ1

�1

l
K

u2dy
�Z þ1

�1

u2dy; ð54Þ

which, for u = 1, that is for a slip flow, becomes

l
K

� �
SL
¼ 1

2

Z þ1

�1

l
K

dy; ð55Þ

where the index SL refers to the slip flow.
With Eqs. (55) and (53) becomes

e ¼ l
K

U 2
IN ; ð56Þ



Fig. 8. Nusselt numbers NuH and NuC of the plates with fully developed
flow at TIN < TC < TH. For thermal symmetry, the curves coincide, but
reason of illustration they are shifted slightly apart.
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where the index SL is omitted, and, for oh/ox = 0, the en-
ergy Eq. (5) takes the form

o2h
oy2
þ EcPr

Da
¼ 0: ð57Þ

The advantage of this equation is its simplicity, but its con-
tent is somewhat questionable, because, from the physical
point of view, it is not easy to accept a piston-like flow
of a viscous fluid in a porous matrix.

When integrated and adapted to the boundary condition
(20), Eq. (57) gives

h ¼ 1

2

EcPr
Da
ð1� y2Þ þ ðhH � hCÞy þ ðhH þ hCÞ

� �
: ð58Þ
The average temperature hm obtained from Eq. (21) at
u = 1 is

hm ¼
1

2
ðhH þ hCÞ þ

1

3

EcPr
Da

; ð59Þ

whereas the Nusselt numbers NuH and NuC, defined in Eqs.
(23) and (24), become

NuH ¼ �
1
2
ðhH � hCÞ � Ec Pr

Da
1
2
ðhH � hCÞ � 1

3
Ec Pr
Da

; ð60Þ

NuC ¼
1
2
ðhH � hCÞ þ Ec Pr

Da
1
2
ðhH � hCÞ þ 1

3
Ec Pr
Da

: ð61Þ

As hH > hC, the Nusselt number NuC of the cold plate is al-
ways positive and finite. On the contrary, the Nusselt num-
ber NuH of the hot plate becomes zero for

EcPr
Da
¼ 1

2
ðhH � hCÞ; ð62Þ

and infinite at

EcPr
Da
¼ 3

2
ðhH � hCÞ: ð63Þ

Fig. 11 illustrates Eqs. (60) and (61) showing the Nusselt
number NuC to increase from NuC = 1 at EcPr/Da = 0 to
NuC = 3 at EcPr/Da ?1. The Nusselt number NuH be-
comes zero at EcPr/Da according to Eq. (62) and passes
a discontinuity at EcPr/Da given by Eq. (63). As EcPr/
Da increases, NuH approaches the horizontal asymptote
NuH1 = �3 from above. The thermal asymmetry is shown
to affect the Nusselt numbers stronger at smaller values of
EcPr/Da.

In this context, it should be noted that Nield et al.
[32,33] treated the energy equation, taking into account
the axial heat conduction in a slug flow without a heat
source, by the method of separation of variables under
symmetric heat transfer conditions. With the definitions
in this paper, they obtained Nu = p2/4 = 2.467 which is
independent of the axial position and of the Peclét number.
At the thermal symmetry (wC = wH), in the fully developed
heat transfer region, the present model gives NuC =
�NuH = 3, which is independent of the heat source.

5.1.5. Thermal symmetry

For TH = TC = TW, the system becomes thermally sym-
metric, giving

H ¼ T � T IN

T W � T IN
; WH ¼ WC ¼ WW ¼

1

X
; ð64Þ

W�WW ¼ �
y2

2
� 2

cosh m
emy þ e�my

2m2

�

þ 1

4cosh2m

e2my þ e�2my

4m2
þ y2

� ��
þ F ðmÞ ð65Þ

with F(m) according to Eq. (31).



Fig. 11. Nusselt numbers of the plates with fully developed slip flow.

Fig. 9. The Nusselt number NuH experiences discontinuity at two values of the parameter m.

Fig. 10. Dependence of the thermal asymmetry on the parameter m at the
discontinuity of NuH (NuH ?1).
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The corresponding expression for the Fourier heat flux
is

qW
kðT H � T IN Þ

¼ � oH
oy
¼ �X

oW
oy

; ð66Þ
where

oH
oy

� �
y¼þ1

¼ �EcPrMU2

m2
1� 3

2m
sinh m
cosh m

þ 1

2cosh2m

� �

ð67Þ

at the hot plate and

oH
oy

� �
y¼�1

¼ þEcPrMU2

m2
1� 3

2m
sinh m
cosh m

þ 1

2cosh2m

� �

ð68Þ
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at the cold plate, which for large m = 1/(DaM)1/2 reduce to

oH
oy

� �
y¼þ1

¼ �EcPr
Da

; ð69Þ

oH
oy

� �
y¼�1

¼ þEcPr
Da

: ð70Þ

In the case of thermal symmetry, the porous layer always
dissipates the heat across its boundaries at the same rate.
The expressions for the Nusselt numbers immediately fol-
low from Eqs. (49) and (50) by setting wH � wC = 0.
5.2. Thermally developing region

For the integration of Eq. (19), the parameters m, wH

and wC, or m, X and hC are to be specified. For m = 0 there
is not a porous insert in the channel, whereas for X = 1, the
fields of w and h are identical. Since the parameter X
depends on the parameter m, Eq. (17), a variation of X
Fig. 12. Temperature profiles in the channel at the fluid inlet temperature b
selected values of the parameter m.
actually results in a variation of the product EcPrM. A
combination and variation of the parameters m, wH and
wC would lead to an almost infinite series of fluid flow
and heat transfer arrangements. In the following, only
some representative results will be discussed depending
on the fluid inlet temperature.
5.2.1. Fluid inlet temperature below the plate temperatures

Fig. 12 shows the temperature profiles for the fluid
inlet temperature below the cold plate temperature
(TIN < TC < TH) at wC = 0.5. For m = 0, an empty chan-
nel, the fluid is always heated by the hot plate (y = +1).
On the contrary, the role of the cold plate (y = �1) is
ambivalent. At a certain distance from the channel inlet,
the cold plate becomes adiabatic and the heat flux changes
its direction, Fig. 13. Upstream of this position, the fluid is
heated, but downstream it is cooled across this plate. The
adiabatic position (AP) establishes along the channel where
the minimum of the temperature profile reaches the cold
elow the cold plate temperature TIN < TC < TH for X = 1, wC = 0.5 and



Fig. 14. Position of the adiabatic point and the vertical Nusselt numbers
asymptotes for the specified parameter.

Fig. 13. Heat fluxes and Nusselt numbers on the plates for TIN < TC < TH.
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plate, (oh/oy)y=�1 = 0. The curve w = wC in the 3D-tem-
perature field in Fig. 12 borders the region along the chan-
nel where the fluid temperature lies below the cold plate
temperature. This curve is obtained by cutting the temper-
ature surface by the plane w = wC. Downstream of this
curve, the fluid dissipates the heat across the cold plate.
In the thermally developing region, the temperature is
always below the straight line drawn through wC and wH,
which represents the fully developed temperature distribu-
tion in the empty channel (m = 0), Eq. (29), where the heat
is transferred from the hot plate to the cold plate through
the fluid without affecting its temperature. The Nusselt
number NuC experiences a discontinuity, becoming zero
further downstream and reaches the limit value in the fully
developed region, NuC1 = NuH1 = 1. Further details con-
cerning the case of an empty channel are given in an earlier
paper [31].

The temperature profiles in the porous layer (m > 0)
are different from these for m = 0. Near the channel
inlet, the fluid is heated by both plates as for m = 0,
but further downstream, the heat flux changes its direc-
tion not only on the cold, but also on the hot plate.
The corresponding adiabatic positions (AP) move
upstream as the parameter m increases. At larger m both
NuC and NuH may become zero and experience
discontinuities.
As an example, Fig. 14 illustrates the positions of the
adiabatic point and of the vertical asymptote of the Nusselt



Fig. 15. The same as in Fig. 12, but for the fluid inlet temperature between the plate temperatures, TC < TIN < TH, at X = 1 and wC = �1.
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numbers for X = 1 and wC = hC = 0.5 as functions of the
parameter m. As the diagrams show, the heat flux always
reverses its direction at the cold plate and the Nusselt num-
ber NuC runs through a discontinuity. The corresponding
positions along the channel move upstream as the parame-
ter m increases. At the hot plate, the heat flux reversal and
the discontinuity of NuH establish only for m > mmin. The
distance of the adiabatic point from the channel inlet is lar-
ger than the distance of the vertical Nusselt asymptote for
the cold plate. The situation reverses for the hot plate. In
the region of the fully developed heat transfer, the condi-
tions for the adiabatic point are described by Eqs. (37)
and (38) and illustrated in Fig. 6.
5.2.2. Fluid inlet temperature between the plate temperatures

Fig. 15 illustrates, as an example, the temperature devel-
opment at a fluid inlet temperature between the plate tem-
peratures (TC < TIN < TH) for X = 1 and wC = hC = �1. In
this case, the fluid is always cooled by the cold plate and
heated by the hot plate for m = 0, and a heat flux reversal
does not occur at the plates, Fig. 16. For m > 0, the heat
flux is larger at the cold plate than at the hot plate. The
Nusselt numbers change in the same manner.
5.2.3. Fluid inlet temperature above the plate temperatures

Fig. 17 visualises the situation for the fluid inlet tem-
perature above the hot plate temperature, TIN > TH > TC,
at X = �1 and wC = hC = 2. In this case, only the hot
plate can become adiabatic at an axial position x/Pe that
depends on the thermal asymmetry wH � wC and the
parameters m and X, Fig. 18. As follows from the dia-
grams, the Nusselt number NuH jumps from positive infi-
nite to negative infinite at the axial position where the
average fluid temperature becomes equal to the plate tem-
perature, hH � hm = 0. The cold plate Nusselt number
NuC decreases monotonically along the flow direction.
The thermal behaviour of the system in this case
(TIN > TH) is similar to the one in Fig. 13 for TIN < TC.
This time, however, the Nusselt number NuH experiences
the discontinuity.



Fig. 16. The same as in Fig. 13, but for TC < TIN < TH.

Fig. 17. The same as in Fig. 15, but for the fluid inlet temperature above the hot plate temperature, TC < TH < TIN, at X = 1 and wC = 2.
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Fig. 18. The same as in Fig. 16, but for TC < TH < TIN.
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6. Conclusions

The temperature distribution in laminar forced convec-
tion with Darcy dissipation in a porous channel exposed
to a thermal asymmetry results in asymmetric heat fluxes
at the channel boundaries. The parameters governing the
heat transfer are the non-dimensional quantities like the
Darcy, the Eckert and the Peclét number, which is well-
known from the literature in the case of symmetric heat
transfer. In addition, the thermal asymmetry imposed as
the boundary condition substantially affects the heat trans-
fer in the porous medium.

The common figure of heat transfer at thermal symme-
try, where, in the developing region, the Nusselt number
continually decreases along the flow direction, changes dra-
matically in the case of a thermal asymmetry. In this case,
at least one of the Nusselt numbers may run through a dis-
continuity and become zero at a certain distance from the
channel inlet. This heat transfer behaviour is illustrated
in the paper for three characteristic arrangements, namely,
for the fluid inlet temperature below, between, and above
the temperatures of the plates. In the thermal developed
region, analytical equations are obtained for the Nusselt
numbers and illustrated for some sets of the process param-
eters. Like in the developing, also in the thermally devel-
oped region, one of the Nusselt numbers may experience
a discontinuity thereby jumping from infinite positive to
infinite negative, or vice versa, and the corresponding plate
kept at constant temperature may simultaneously become
adiabatic.

After this paper has been submitted for publication, two
publications have appeared in the area of fluid flow and
heat transfer in porous media. Minkowycz and Haji-
Sheikh [34] deal with the heat transfer in parallel plates
and circular porous passages with axial heat conduction
and symmetric thermal boundary conditions. The paper
by Chandesris and Jamet [35] is devoted to fluid flow in a
composed flat channel.
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